1. Utangulizi
The rapid growth of renewable energy, particularly in grids like ERCOT in Texas, is accompanied by the emergence of large, high-energy-consuming loads such as cryptocurrency mining facilities. These facilities typically require 75 megawatts or more per site, representing a new class of grid participants. Unlike traditional industrial loads, cryptocurrency miners are powered by power electronic converters, classifying them as inverter-based resources. This paper addresses a critical gap: the lack of detailed electromagnetic transient models to understand how these large-scale nonlinear loads interact with the grid during disturbances, with a specific focus on their low-voltage ride-through capability—a key requirement for grid stability.
~75 MW
Mzigo wa kawaida wa kituo kimoja kikubwa cha uchimbaji wa fedha za kidijitali
0.36 per unit
The lowest voltage recorded during the West Texas cascading failure event in October 2022
0.994-0.995
Steady-state leading power factor of mining load
2. Mbinu na Uundaji wa Mfano
The core of this study is to develop a scalable electromagnetic transient model for cryptocurrency mining load using electromagnetic transient program software.
2.1 EMT Model Architecture
The model simulates the behavior of commercial ASIC miners used in large-scale operations. It captures the dynamics of the converter-based front end, the computational load, and the logic controlling the miner's response to grid voltage variations. The model employs a modular design, allowing the aggregation of multiple miner units to represent a complete facility, thereby enabling the study of the impact of hundreds of megawatts of such loads on transmission system dynamics.
2.2 Load Characteristics and Validation
The model performance was cross-validated with physical ASIC miners. Key matching characteristics include:
- Steady-State Behavior:High power factor (approximately 0.995 leading).
- Transient/Startup Behavior:Nonlinear current consumption and harmonic distortion, consistent with laboratory tests and field measurements from industrial facilities.
- LVRT Threshold:The critical point at which mining machine power electronic equipment ceases operation due to low input voltage.
3. Tathmini ya Uwezo wa Kupita kwenye Voltage ya Chini
Uwezo wa kuvuka voltage ya chini - uwezo wa kudumisha muunganisho kwenye mtandao wakati wa kupungua kwa ghafla kwa voltage - ni muhimu kwa rasilimali zinazotegemea inverter kuzuia hitilafu mfululizo. Ingawa kuna mahitaji ya kawaida kwa jenereta, hakuna kanuni zinazolazimishwa kwa mizigo mikubwa inayotegemea inverter kama vile mashine za uchimbaji wa fedha za kripto, jambo linalosababisha udhaifu.
3.1 Mandhari ya Uchunguzi na Uchambuzi wa Hitilafu
Modeli iliyothibitishwa iliwekwa chini ya majaribio katika mandhari mbalimbali ya hitilafu:
- Local Fault:A fault occurring within the mining facility's own electrical infrastructure.
- Remote Grid Fault:Mzigo unapojaribiwa kwa kukabiliana na kushuka kwa kwa voltage kinachosambaa kupitia mtandao, kwa kuzingatia hitilafu inayotokea kwenye basi ya mbali ya mtandao wa usambazaji wa umeme uliounganishwa.
3.2 Performance Metrics and Results
Utafiti huu unapima uwezo wa mzigo wa uchimbaji wa kuvuka kwa voltage ya chini, na kuamua mipaka ya mkunjo wa voltage-muda ambayo mzigo hudumisha uendeshaji mtandaoni. Matokeo yanaweza kuonyesha kuwa, ingawa mashine za uchimbaji zinaweza kuwa na vifaa vya nguvu vyenye nguvu ndani, badilishaji wao unaoelekea kwenye mtandao wa umeme una mipangilio maalum ya kufungia kwa voltage ya chini. Kupoteza kwa ghafla kwa mzigo wa mamia ya megawati kutokana na kufungia kwa wakati mmoja kwa voltage ya chini kwenye shamba lote la uchimbaji, kunaweza kusababisha usawa mzuri mkubwa wa mzigo-uzalishaji, unaoweza kusababisha kupanda kwa ghafla kwa masafa na kutokuwa na utulivu zaidi – sawa na matatizo yanayokutana na uzalishaji wa umeme unaotegemea badilishaji.
4. Technical Analysis and Insights
4.1 Core Insights
Mzigo wa uchimbaji wa sarafu za kidijitali sio tu watumiaji wakubwa; niWaundaji wa umbo la gridi ya umeme wenye uwezo wa kutotulia kwa uwezekano. Sifa zao zinazotegemea inverter zina maana kwamba hazitoi inertia ya asili au mkondo wa hitilafu kama vile injini za sinkronia. Tukio la kukatika kwa umeme la Texas mwezi Oktoba 2022 (mshtuko wa voltage uliosababisha kukatika kwa umeme kwa megawati 400 ikiwemo mashine za uchimbaji) halikuwa la kawaida—ilikuwa jaribio la shinikizo ambalo miundo ya sasa ya gridi haikupita. Mfano wa muda mfupi wa sumakuumeme wa makala hii ndio chombo cha kwanza muhimu cha kutabiri tukio lijalo.
4.2 Logical Thread
The research logic is impeccable: 1) Identify a new grid element with a known incident history that is not yet fully understood (cryptographic load). 2) Discard simplified static models; establish a dynamic electromagnetic transient model capable of capturing fast power electronic switching. 3) Validate against hardware—eliminate the black box. 4) Stress-test it under realistic grid fault conditions. 5) Conclude that, for reliability, extending and integrating the model into full-system studies is not onlybeneficial, but alsoNecessary. It progresses from phenomena to high-fidelity simulation, and then to actionable insights for grid planning.
4.3 Strengths and Weaknesses
Faida:Uwezo wa kupanua mfano na msingi wake wa EMTP ndio silaha yake ya siri. Inaweza kuunganishwa moja kwa moja kwenye zana zinazotumiwa na wapangaji wa usambazaji wa umeme. Mwelekeo wa kuvuka kwa voltage ya chini unashughulikia tishio la moja kwa moja zaidi. Uthibitishaji na mashine halisi za uchimbaji unaongeza uaminifu usio na shaka.
Upungufu:The paper mentions but does not fully explore.Control layer.Miners can shut down within milliseconds based on profitability algorithms, independent of voltage. This "economic tripping" could be more disruptive than technical low-voltage ride-through failures. The model also needs to be extended to include harmonic interactions and subsynchronous oscillation risks, which are known issues documented in North American Electric Reliability Corporation and IEEE Power & Energy Society literature for high penetrations of inverter-based resources.
4.4 Actionable Insights
ForGrid operators (e.g., ERCOT): Mandate that large inverter-based loads (not just generators) meet low-voltage ride-through requirements. Use this model to conduct mandatory interconnection studies for all mining facility grid connection applications. ForKampuni ya Uchimbaji Madini: Wekeza katika udhibiti wa kibadilishaji kinachounga mkono mtandao wa umeme (kama vile usaidizi wa voltage ya nguvu, usimamishaji wa papo hapo) kama gharama ya uendeshaji — hii ni nafuu kuliko kukabiliwa na mashtaka kutokana na kukatika kwa umeme. KwaWatafiti: Modeli huu wa mzigo unaunganishwa na mfumo wa mchanganyiko ili kuchunguza kutokuwa na utulivu wa mchanganyiko wa asilimia kubwa ya nishati mbadala na asilimia kubwa ya mizigo iliyosimbwa. Hatua inayofuata ni kuiga kikundi kizima cha mashine ya uchimbaji na majibu yanayoendeshwa na programu, ambapo hatari halisi ya kimfumo iko.
5. Original Analysis: A New Nemesis or Ally for the Power Grid?
Utafiti huu wa Samanta et al. ni ushirikiano wa kufaa na muhimu katika nyanja ya mifumo ya umeme, inayokabili changamoto mbili za kupunguza kaboni na kidijitali. Karatasi hiyo inasema kwa usahihi kwamba mizigo ya uchimbaji wa sarafu za kripto ni kipengele cha mtandao wa umeme kinachobadilisha dhana. Msongamano wao wa juu wa nguvu, urahisi wa kijiografia na usanifu unaotegemea kiinua-msukumo huwafanya kuwa tofauti kabisa na mizigo ya kawaida ya viwanda. Uundaji wa mifano ya kupanuka ya muda mfupi wa sumakuumeme ni mchango muhimu wa kiufundi, unaojaza pengo ambalo mifano ya mizigo isiyobadilika au iliyokusanyika haiwezi kujaza. Kama ilivyosisitizwa na Mpango wa "Kisasa cha Mtandao wa Umeme" wa Idara ya Nishati ya Marekani, kuelewa tabia ya mienendo ya mizigo mpya ni muhimu kwa ajili ya kujenga mitandao ya umeme yenye uimara.
Kwa kuzingatia mifano ya kihistoria, umakini wa utafiti huu kwenye kuvuka kwa voltage ya chini ni unaofaa. Kuvunjika kwa umeme kwa South Australia mwaka 2016 (kilichochambuliwa kwa kina na Australian Energy Market Operator) kilitokana na mipangilio ya ulinzi ya vituo vya upepo, ambayo ilisababisha kuzimwa kwa mfululizo wakati wa kupungua kwa ghafla kwa voltage. Ufanano huu na mzigo wa uchimbaji wa fedha za kripto ni dhahiri kabisa. Mfano wa makala hii unawawezesha waandaaji kufanya uchambuzi wa baada ya tukio kama huo kwa njia ya kutangulia. Hata hivyo, mfano huu unashughulikia zaidi majibu ya "vifaa". Kutokuwa na uhakika mkubwa zaidi, kama inavyoonekana katika utafiti wa majibu ya mahitaji ya vituo vya data, ni majibu ya "programu" au kiuchumi. Uendeshaji wa mashine za uchimbaji unatawaliwa na chaguo la kukokotoa la faida $\Pi = R(\text{bei ya sarafu}) - C(\text{bei ya umeme})$. Kupanda kwa ghafla kwa bei ya umeme wakati wa dharura ya gridi kunaweza kusababisha kuzimwa kwa uratibu haraka kuliko kupungua kwa voltage yoyote, na tabia hii haijajumuishwa katika mfano huu wa muda mfupi wa sumakuumeme, lakini ni muhimu kwa picha kamili.
Zaidi ya hayo, mjadala wa karatasi katika muktadha wa gridi ya ERCOT ya Texas ni wa kuhamasisha. Soko la nishati tu la ERCOT na uenezi wa juu wa nishati mbadala zimeunda maabara kamili kwa utafiti kama huu. Kazi hii inasisitiza mwelekeo mpana zaidi: muunganiko wa tabaka za mtandao, tabaka za kimwili na tabaka za kiuchumi katika mifumo ya umeme. Mielekeo ya baadaye lazima ikue kuwa jukwaa la usimulishaji wa ushirikiano linalounganisha mienendo ya muda mfupi ya sumakuumeme (kama mfano huu), ucheleweshaji wa mtandao wa mawasiliano, na algoriti za kiuchumi zinazotegemea wakala. Ni kwa njia hii tu tunaweza kutathmini ikiwa mizigo hii mikubwa na inayobadilika ni vistabilizaji vya gridi - vinavyoweza kutoa majibu ya haraka ya mahitaji - au chanzo cha kutokuwa na utulivu. Karatasi hii inatoa msingi wa tabaka ya kimwili kwa uchambuzi ngumu zaidi ambao lazima ujengwe.
6. Maelezo ya Kiufundi na Fomula za Hisabati
Mfano wa Muda Mfupi wa Umeme unashika mienendo ya kubadili mbele ya kibadilishaji cha AC/DC cha ASIC miner. Uwakilishi rahisi wa udhibiti wa kibadilishaji kinachotumiwa kudumisha voltage ya mstari wa moja kwa moja ($V_{dc}$) unaweza kuonyeshwa kwa kutumia kikoa cha $dq$ na kudhibiti kiwango cha uwiano-kiunganishi:
$\begin{aligned} i_{d}^{ref} &= K_{p}(V_{dc}^{ref} - V_{dc}) + K_{i} \int (V_{dc}^{ref} - V_{dc}) dt \\ i_{q}^{ref} &= 0 \quad \text{(用于单位功率因数控制)} \end{aligned}$
其中 $i_{d}^{ref}$ 和 $i_{q}^{ref}$ 是内环电流控制回路的参考电流。低电压穿越行为通过欠压保护逻辑建模,当测量的有效值电压 $V_{rms}$ 低于阈值 $V_{th}$ 且持续时间 $t > t_{delay}$ 时,该逻辑会禁用变流器脉冲:
$\text{欠压锁定跳闸信号} = \begin{cases} 1 & \text{若 } V_{rms} < V_{th} \text{ 且 } t \ge t_{delay} \\ 0 & \text{其他情况} \end{cases}$
Tabia ya mienendo ya mzigo wa kitengo cha usindikaji cha ASIC inawakilishwa kama mzigo wa nguvu ya mara kwa mara ($P_{load}$) kwenye basi ya DC, ambayo hutumia mkondo $I_{dc} = P_{load} / V_{dc}$.
7. Matokeo ya Majaribio na Maelezo ya Michoro
Although the provided PDF excerpt does not show specific result figures, it describes key experimental findings:
- Mchoro 1 (rejea): Inaweza kuwa picha au mchoro wa kituo cha uchimbaji wa "Riot Platforms, Inc." huko Rockdale, Texas, ukionyesha kituo chake maalum cha umeme cha megawati 750, na kusisitza kwa ujasiri uhusiano mkubwa wa mtandao wa umeme unaohitajika.
- Mchoro 2 (rejea): Described as laboratory test results from physical mining machines (such as S9 AntMiner), showing voltage and current waveforms. The key finding is that while the supply voltage maintains a sinusoidal waveform (connected to an ideal power source), thecurrent waveform exhibits significant distortion during the startup transient period.. This nonlinear, harmonic-rich inrush current is a key detail captured by electromagnetic transient models but often overlooked by steady-state models.
- Low Voltage Ride-Through (LVRT) capability curve: Matokeo ya msingi ya majaribio yatakuwa grafu ya voltage (katika vizio vya kitengo) dhidi ya wakati (sekunde), inayofafanua mipaka ya uwezo wa mzigo wa uchimbaji wa sarafu kupita. Itaonyesha kwamba kwa hitilafu zinazosababisha kushuka kwa ghafla kwa voltage chini ya mkunjo maalum (mfano, chini ya 0.7 p.u. kwa zaidi ya sekunde 0.5), mzigo wa uchimbaji ulioigwa utakatika, ukidhani safari ya kuzima kwa kufungia kwa voltage ya chini. Kulinganisha na mahitaji ya kupita kwa voltage ya chini ya jenereta (kama vile ya ERCOT), kutaonyesha wazi pengo la kufuata kanuni.
8. Analytical Framework: A Non-Code Case Study
Hali: Mtaalamu wa upangaji wa usambazaji wa umeme wa ERCOT anachunguza uunganisho wa kituo kipya cha uchimbaji wa fedha za kripto chenye uwezo wa megawati 300 kwenye baa ya 138 kV ambayo tayari ina uunganisho wa shamba la upepo lenye uwezo wa megawati 200.
Utumizi wa Mfumo:
- Ujumuishaji wa Mfano: The planner creates a 300 MW aggregated mining load model using the scalable electromagnetic transient model from this paper. This model is integrated into a larger regional power grid electromagnetic transient model, which includes detailed models of wind farms (with their own low voltage ride-through controls) and synchronous generators.
- Fault Definition: Define a severe fault: a three-phase fault occurs on a nearby transmission line, and the circuit breaker clears it within 5 cycles (0.083 seconds).
- Simulation and Analysis: Run the electromagnetic transient simulation.
- Observation A: Uvunjifu ulisababisha voltage ya baa ya gridi kushuka kwa kasi hadi thamani ya 0.45 p.u. ndani ya sekunde 0.1.
- Uchunguzi B: Kituo cha nishati ya upepo kinachokidhi viwango vya kupita kwa voltage ya chini kinabaki kwenye gridi na kujaribu kuunga mkono voltage.
- Uchunguzi C: The mining load model based on typical undervoltage lockout settings tripped offline due to low voltage at 0.08 seconds.
- Impact Assessment: The sudden loss of a 300 MW load caused a sharp drop in system frequency.Kupanda(Kwa mfano, kilele cha 0.3Hz). Mzunguko huu wa ziada unaweza kusababisha udhibiti wa jenereta nyingine, au katika hali mbaya zaidi, kusababisha shamba la upepo kukatika kwa sababu ya ulinzi dhidi ya mzunguko wa ziada, na kusababisha kukatika kwa umeme kwa mfululizo.
- Mapendekezo: Mipango ulipendekeza kwamba makubaliano ya kujiunga na mtandao wa vifaa vya uchimbaji madini yanapaswa kuwa na masharti ya ziada, yanayohitaji kubadilishwa kwa udhibiti wa kibadilishaji ili kukidhi mkunjo maalum wa kuvuka voltage ya chini (kwa mfano, kudumisha muunganisho wa gridi kwa sekunde 0.15 hata wakati voltage inaposhuka hadi thamani ya kawaida ya 0.2), na kukimbia upya mfano wa mfumo ili kuthibitisha utulivu.
9. Future Applications and Research Directions
- Uundaji wa Kanuni za Gridi: Mfano huu utasaidia waendeshaji wa mifumo huru na wasimamizi (kama Tume ya Udhibiti wa Nishati ya Shirikisho nchini Marekani) kuunda na kuthibitisha viwango vya lazima vya kiufundi kwa mzigo mkubwa, unaobadilika unaotegemea inverter, ukiwa na upeo unaozidi kupita chini ya voltage hadi kujumuisha uwezo wa kupita masafa na usaidizi wa nguvu isiyo na kazi ya kusisimua.
- Uundaji wa Mfano wa Rasilimali Mseto: Kazi ya baadaye itaunganisha mfano wa mzigo wa uchimbaji madini na rasilimali zilizo katika eneo moja (kama jua la upande wa mtumiaji + uhifadhi wa nishati) ili kuchunguza sifa za mienendo ya vifaa vya uchimbaji vya "wazalishaji-watumiaji" vinavyoweza kufanya kazi kwa njia ya kisiwa au kutoa huduma za mtandao wa umeme.
- Information-Physical-Economic Co-Simulation: The next frontier is linking electromagnetic transient models with economic agent models. This will simulate how real-time electricity prices or blockchain difficulty adjustments affect the power consumption of an entire mining fleet, creating a digital twin for market and stability analysis.
- Extension to Other Loads: Mfumo huu wa kuiga unatumika kwa vikundi vingine vikubwa vinavyotegemea vinjini-badilishaji, kama vile vituo vya kuchaji magari ya umeme, vichujio-hidrojeni na mizigo mingine inayofanana na kituo cha data, na hutoa kiolezo cha kutathmini athari zake kwenye mtandao wa umeme.
- Uthibitishaji wa Mzunguko-katika-Vifaa: Utafiti wa baadaye unapaswa kuweka modeli katika usanidi wa mzunguko-katika-vifaa ili kujaribu vifaa halisi vya wachimba madini na rileshaji za ulinzi wa mtandao wa umeme kwa majibu kwa hali za hitilafu zilizosimuliwa, na hivyo kufunga mzunguko kati ya uigaji na uthibitishaji wa kimwili.
10. References
- ERCOT, “ERCOT Quick Facts,” 2023.
- J. Doe, “The Energy Footprint of Blockchain,” Nature Energy, vol. 5, pp. 100–108, 2020.
- NERC, “Lesson Learned: Inverter-Based Resource Performance During Grid Disturbances,” Technical Report, 2022.
- ERCOT, “Disturbance Report: West Texas Event October 12, 2022,” 2022.
- IEEE Power & Energy Society, “Impact of Inverter-Based Generation on Bulk Power System Dynamics and Short-Circuit Performance,” Technical Report, 2018.
- Riot Platforms, Inc., "Rockdale Facility Overview," 2023.
- ERCOT, "Nodal Protocols," Sehemu ya 6, 2023.
- ERCOT, "Generation Interconnection Status Report," 2023.
- Wheeler et al., "Power Quality Analysis of a Bitcoin Mining Facility," in Proc. IEEE ECCE, 2021.
- Samanta et al., “Supplementary Material: Lab Tests and Field Data for Crypto-Mining Loads,” Texas A&M University, 2023. [Online]. Available: [Link to Repository]
- U.S. Department of Energy, “Grid Modernization Initiative Multi-Year Program Plan,” 2021.
- Australian Energy Market Operator (AEMO), “Black System South Australia 28 September 2016 – Final Report,” 2017.